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10 kHz the device turns on to nearly the same extent as at 1 Hz. 
The polyaniline device shows an easily detected variation in drain 
current, /D, for flow of only 10"12C in the gate circuit accom­
panying AK0 in the VG region of maximum transconductance. 
Thus, the device can respond to a small fraction of a femtomole 
(10-10C) of charge. 
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This paper describes the synthesis and characterization of the 
o-methoxy-pendant cyclam complexes. Synergistic, simultaneous 
oxidation has been revealed by unusually low potentials at -0.30 
V vs. SCE for Fe2+/Fe3+ and for o-methoxyphenolate. 

The coordination chemistry of bidentate catechol ligands (cat2-) 
has long been a subject of chemical2-7 as well as biochemical 
interest.8 Recently, however, monodentate catecholate (catH") 
coordination to Fe3+ was proposed as an active intermediate in 
catechol-cleaving dioxygenases, whereupon the catechol becomes 
susceptible to O2 attack.9,10 

With the intention of exploring the redox coupling between the 
monodentate catecholate and metal ions, we have designed a new 
cyclam ligand I11 that strategically places the N4 macrocycle to 

OCH3 ^ , 

rOH C l 

H N V J H 
1 2 M = Cu1Ni1Fe 3 

hold metal ions during the course of the redox process close to 
the o-methoxyphenol, an equivalent of catechol.12 Earlier,13'14 

(1) (a) Hiroshima University, (b) Hirosaki University. 
(2) Pierpont, C. G.; Buchanan, R. M. Coord. Chem. Rev. 1981, 38, 45-87. 
(3) Kessel, S. L.; Emberson, R. M.; Debrunner, P. G.; Hendrickson, D. N. 

Inorg. Chem. 1980, 19, 1170-1178, and references therein. 
(4) Buchanan, R. M.; Claflin, J.; Pierpont, C. G. Inorg. Chem. 1983, 22, 

2552-2556. 
(5) Hartman, J. R.; Foxman, B. M.; Cooper, S. R. Inorg. Chem. 1984, 23, 

1381-1387. 
(6) Lynch, M. W.; Hendrickson, D. N.; Fitzgerald, B. J.; Pierpont, C. G. 

J. Am. Chem. Soc. 1984, 106, 2041-2049. 
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107, 6920-6923, and references therein. 
(9) Que, L., Jr.; Lipscomb, J. D.; Miinck, E.; Wood, J. M. Biochim. 

Biophys. Acta 1977, 485, 60-74. Lauffer, R. B.; Heistand, R. H., II; Que, 
L., Jr. J. Am. Chem. Soc. 1981, 103, 3947-3949. 
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kamoto, H.; Yoshida, S. J. Am. Chem. Soc. 1986, 108, 2921-2932. 

(11) The new ligand 1 was synthesized as follows: Refluxing methyl 
2'-(benzyloxy)-3'-methoxycinnamate and l,9-diamino-3,7-diazanonane in dry 
CH3OH for 3 weeks afforded the 14-membered oxotetraamine (mp 170-171 
0C, from CH3CN in 20% yield), and reduction of the oxotetraamine with 
B2H6 in tetrahydrofuran yielded the cyclam derivative 1 (mp 106-107 0C, 
from CH3CN in 60% yield). 

we reported the X-ray structure15 of the axial phenolate coor­
dinating complexes (structure 2), along with the mutually affected 
redox behavior of the phenolate ion and metal ions. 

The new o-methoxyphenol-pendant cyclam 1 has pATa values 
[determined pH metrically at 25 0C, / = 0.1 M (NaClO4)] of 
12.0, 11.16, 8.99 (for phenol, confirmed spectrophotometrically), 
<2, and <1 and the following UV spectra: Xmax 276 nm (e 2500, 
pH 6.2) for the phenol form; Xmax 292 nm (t 4500) and 243 nm 
(e 8000) for the phenolate form (pH 12.0). In the cyclic volt-
ammogram (CV)16 of 1, the anodic oxidation, like o-methoxy­
phenol itself,17 starts with irreversible 2e oxidative dimethylation 
to o-quinone at +0.58 V (pH 4.0 acetate buffer), +0.45 V (pH 
7.3 Tris buffer), and +0.30 V (pH 10.0 carbonate buffer), followed 
by a reversible18 o-quinone/catechol 2e redox process at +0.33, 
+0.13, and 0 V, respectively. 

Under argon atmosphere191 forms 1:1 complexes in situ having 
structure 3 with Ni2+ (pH > 7), Cu2+ (pH > 9), and Fe2+ (pH 
> 6),20 as established by pH metric titration. The UV absorptions 
[Xmax 293 nm (t 3600) and 247 nm (e 8600) for Ni2+ (pH 8.2), 
288 nm (« 5700, sh) and 246 nm (« 12000) for Cu2+ (pH 10.0), 
and 287 nm (e 3700) and 243 nm (e 7600) for Fe2+ (pH 8.3)], 
being similar to corresponding features in 2, support the phenolate 
coordination in 3. In electrochemical behavior, the Cu2+ complex 
3 displays an identical CV (Figure 1-1) with that of the unco­
ordinated ligand, indicating little influence of Cu2+ on oxidation 
of the axial o-methoxyphenolate. Cu2+ is not oxidized in the 
measured potential range. 

The CV and RDE of the Ni2+ complex 3 Figure l-II) indicate 
the 2e oxidation (to 4) at +0.33 V (pH > 7), followed by Ie 

(12) We have previously synthesized the catechol-pendant cyclam (ref 14); 
the metal interactions were more complex due to the ligand's rapid decom­
position in air. 

(13) Kimura, E.; Koike, T.; Takahashi, M. J. Chem. Soc, Chem. Com-
mun. 1985, 385-386. 

(14) Kimura, E. Pure Appl. Chem. 1986, 58, 1461-1466. 
(15) X-ray crystal structure of Ni2+-phenolate-pendant-cyclam complex: 

Iitaka, Y.; Koike, T.; Kimura, E. Inorg. Chem. 1986, 25, 402-404. X-ray 
crystal structure of Cu2+-phenolate-pendant-cyclam complex: Kimura, E.; 
Koike, T.; Uenishi, K.; Hediger, M.; Joko, S.; Arai, Y.; Kodama, M.; Iitaka, 
Y. Inorg. Chem. 1987, in press. 

(16) Electordes used in CV and RDE (rotating disk electrode voltammo-
gram) are all glassy carbons which should be well-polished before every 
measurement, which were checked by using a reversible redox system of 
Ni2+'3+-cyclam complex in 0.2 M Na2SO4 at 25 0C. 

(17) Dryhurst, G.; Kadish, K. M.; Scheller, F.; Renneberg, R. Biological 
Electrochemistry; Academic Press: New York, 1982; Vol. 1, pp 116-179. 

(18) Reversibility in this and the following redox systems in 0.2 M Na2SO4 
was checked by log plots of log[i/(id - 0] against the dc potential being 
invariably linear with reciprocal slope of 30 mV, which corresponds to a 
reversible two-electron oxidation. 

(19) In this and the following electrochemical studies, O2 is rigorously 
excluded by using a stream of argon prepurified with an alkaline pyrogallol 
solution. 

(20) Due to rapid decomposition, isolation of these complexes was un­
successful, except for the pink (high-spin) Ni2+ complex (with very low yield) 
out of a pH 8 aqueous solution OfNiCl2 and 1 under argon atmosphere. Anal. 
Calcd for C17H29N4O2NiCl-H2O: C, 47.09; H, 7.21; N, 12.92. Found: C, 
47.05; H, 7.40; N, 12.50. The Ni2+ complex isolated has shown identical 
solution behaviors as the one prepared in situ. 
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Figure 1. Cyclic voltammograms (I-a, Il-a, Ill-a) at a scan rate of 100 m V s"\ rotating disk electrode voltammograms (I-b, Il-b, III-b-d) at an electrode 
rotation rate of 1000 rpm, and a scan rate of 10 mV s"1 on a glassy carbon disk electrode with 0.2 M Na2SO4 at 25 0C. I for 1 mM Cu2+ complex 
3 at pH 10.0. II for 1 mM Ni2+ complex 3 at pH > 7.0. Ill for 1 mM free ligand and Fe complex at pH 7.3 (Tris buffer); curve a and b for Fe2+ 

complex 3, curve c for Fe3+ complex 7 (aeration product of Fe2+ complex 3), curve d for free ligand 1. No further oxidation wave was seen up to +0.5 
V vs. SCE. 

oxidation (to 5) at +0.62 V; in the subsequent CV sweep the 
reversible oquinone/catechol (4 ^= 6) wave appears at +0.14 V, 
as was seen with the free ligand. In view of the fact that the 
oxidation potential (+0.35 V) for Ni2 + /Ni3 + in the phenolate-
pendant cyclam complex 215 is in a similar range with the present 
oxidation potential (+0.30 V) of the o-methoxyphenolate, we have 
attempted to determine formal charges for the initial 2e oxidized 
product that was obtained by applying constant potential of +0.45 
V at pH 8.3.21 Its ESR silent behavior supports nonradical 
structure 4, excluding the electron-transferred semiquinone-Ni3+ 

structure. The magnetic susceptibility of 4 measured by the Evans 
method22 was 2.8 nB, indicating a high-spin Ni2+ complex for 4. 
The further Ie oxidized (at +0.70 V) product has structure 5 with 
its ESR spectrum23 characteristic to Ni3+ and magnetic moment 
of 1.7 MB- This electrochemically oxidized solution showed an 
identical CV as those before the Ie oxidation. 

The most unusual synergistic oxidation behavior was revealed 
by the definite 3e oxidation** OfFe2+ complex 3 simultaneously 
at -0.30 V(pH 7.3 Tris buffer) on RDE (see Figure 1-IIIb. The 
CV of 3 in Figure 1 -Ilia shows no other redox wave up to +0.5 
V!). The potential of -0.30 V is too low for the 2e oxidation of 
2H+-, Cu2+-, or Ni2+-binding o-methoxyphenolate. The Ie ox­
idation potential for Fe2+/Fe3+ in 2 was -0.16 V.13 We are thus 
tempted to conclude that Fe2+ is initially oxidized to Fe3+ 7 at 
the lower potential of -0.30 V under the influence of stronger 
(7-donor, o-methoxyphenolate and thereupon that Fe3+ catalytically 
drains 2e out of this ligand to a possible quinone pendant 8.25 All 
the attempts to prepare 8 in large quantity for further identification 
by electrochemical oxidation at -0.10 V resulted in failure, mostly 
due to the immediate halt of the electric current. We suspect that 
this is because kinetically reactive 8 undergoes immediate intra­
molecular (e.g., Michael addition) as well as intermolecular re­
actions whose unidentified products stick to the electrode surface. 
Mild aeration (20 min) of 3 initially oxidizes Fe2+ to Fe3+ [7, deep 
violet, Xmax 278 nm (t 5500), 518 nm (e 2150) at pH 7.0, in analogy 
to Fe3+ complex of 213], which undergoes further 2e oxidation to 
8 at -0.30 V (curve c). 

(21) The products 4 [Xmax 458 nm (e 11200) and 508 nm (sh, t 10700) at 
pH 5.3] and 5 [Xmax 279 nm (t 6400), 441 nm (sh, e 10800), 489 nm (« 11600) 
at pH 5.0] reveal characteristic UV-vis absorption spectra, which differ from 
those of noncoordinating o-benzoquinone (X011,. 390 nm, e 1800 at pH 5.0) or 
of the oquinone-pendant cyclam (X1113x 406 nm, e 1900 at pH 3.5). 

(22) Evans, D. F. J. Chem. Soc. 1959, 2003-2005. 
(23) The ESR spectrum of 5 (g± = 2.18, gl = 2.01 at 77 K) is similar to 

those of Ni3+-[14]aneN4(cyclam) (g± = 2.23, g} = 2.02: Zeigerson, E.; 
Ginzburg, G.; Schwartz, N.; Luz, Z.; Meyerstein, D. J. Chem. Soc, Chem. 
Commun. 1979, 241-243.) and of 2 (M = Ni3+) (g± = 2.18, £, = 2.02; 
Kimura, E.; Koike, T., unpublished data.). 

(24) The number of electrons involved were calibrated by using well-es­
tablished 2e and Ie oxidation RDE wave heights of the Ni" complex 3, as 
illustrated in Figure 1 -II. 

(25) The 2e oxidation of another part of the ligand (e.g., the cyclam part) 
at this potential is very unlikely, in view of the fact that phenolate-cyclam in 
2 (M = Fe3+) is not oxidized up to +0.9 V (Kimura, E., unpublished data.). 

Although the final product structure 8 remains open to question, 
the present Fe macrocyclic complexes 3 and 7 have offered the 
first prototype for synergistic intramolecular redox coupling be­
tween monodentate catecholate and metal ions to render the 
catechol unusually vulnerable to oxidation. We are currently 
studying the catechol-cleaving reaction with 3. Further modi­
fication of metal ions or macrocyclic structure with catechol 
pendant would find the novel redox system. Moreover, the re­
activity of the remaining 6th axial position would be extremely 
interesting as a catalytic site. 
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The chemistry of bridging methylene metal dimers and the value 
of the 13C NMR chemical shifts have been interpreted as due to 
a partial negative charge on the carbon atom.2 PES yields a C ls 

binding energy indicative of -0.5 e charge.3 However, for (̂ i-
CH2) [MnCp(CO)2J2, a high-resolution X-ray diffraction electron 
density map shows no excess charge buildup.4 We are attempting 
to resolve the dilemma by using solid-state deuterium NMR 
techniques. In the results for cw-G"-C2H2)(iU-CO)[FeCpd(CO)]2 

(Cpd = 5% deuteriated cyclopentadienyl) presented here, we find 
no evidence for an excess negative charge on the bridging meth­
ylene carbon atom. 

(1) (a) Department of Chemistry, Louisiana State University, Baton 
Rouge, LA 70803. (b) Bone Research Branch, National Institute of Dental 
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